Abstract

We investigate decompositions of a graph into a small number of low-diameter subgraphs. Let P(n, ε, d) be the smallest k such that every graph G = (V, E) on n vertices has an edge partition E = E0 ∪ E1 ∪ ⋅⋅⋅ ∪ Ek such that |E0| ≤ εn2, and for all 1 ≤ i ≤ k the diameter of the subgraph spanned by Ei is at most d. Using Szemerédi's regularity lemma, Polcyn and Ruciński showed that P(n, ε, 4) is bounded above by a constant depending only on ε. This shows that every dense graph can be partitioned into a small number of ‘small worlds’ provided that a few edges can be ignored. Improving on their result, we determine P(n, ε, d) within an absolute constant factor, showing that P(n, ε, 2) = Θ(n) is unbounded for ε < 1/4, P(n, ε, 3) = Θ(1/ε2) for ε > n−1/2 and P(n, ε, 4) = Θ(1/ε) for ε > n−1. We also prove that if G has large minimum degree, all the edges of G can be covered by a small number of low-diameter subgraphs. Finally, we extend some of these results to hypergraphs, improving earlier work of Polcyn, Rödl, Ruciński and Szemerédi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.