Abstract
In this paper, we consider the design of an optical aggregation network with network edge functions virtualization in order to reduce network cost. Here, an optical aggregation network connects a server accommodating virtual network functions (VNFs) with optical line terminals (OLTs) via a time-division-multiplexing (TDM)-based point-to- multipoint (P2MP) wavelength path to aggregate traffic from access networks. Each VNF must be placed on an adequate server in consideration of the efficiency of wavelength paths to reduce network cost. However, existing VNF placement algorithms determines VNF placement without considering the efficiency of P2MP wavelength paths, which deteriorates network performance and increases network cost. To solve the problem, VNF placement must be carried out so that a P2MP wavelength path can be efficiently shared by multiple OLTs for reducing network cost. For this purpose, we propose a VNF placement algorithm, called decomposition-based VNF placement algorithm (DVA), in a TDM wavelength-division-multiplexing (WDM)-based optical aggregation network. The DVA can find approximate solutions of sufficient quality with practical computation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.