Abstract

We prove a decomposition theorem for hesitant fuzzy sets, which states that every typical hesitant fuzzy set on a set can be represented by a well-structured family of fuzzy sets on that set. This decomposition is expressed by the novel concept of hesitant fuzzy set associated with a family of hesitant fuzzy sets, in terms of newly defined families of their cuts. Our result supposes the first representation theorem of hesitant fuzzy sets in the literature. Other related representation results are proven. We also define two novel extension principles that extend crisp functions to functions that map hesitant fuzzy sets into hesitant fuzzy sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.