Abstract
The aim of this paper is to show different patterns for decomposition of the main mass of needle litter from two boreal and temperate coniferous tree species, both leading to a stabilized fraction of litter. To this purpose we have reviewed information on decomposition patterns in the lignin-dominated (late) stages of two local foliar litter types, namely those of Scots pine (Pinus silvestris) and Norway spruce (Picea abies) from two climatic gradients of equal extension. We have also reviewed factors determining the limit values for both species.Long-term decomposition studies were used to calculate annual mass loss in the lignin-dominated decomposition stage and relate these to mean annual temperature (MAT), mean annual precipitation (MAP) and concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), manganese (Mn) and acid unhydrolyzable residue (gravimetric lignin, AUR).There was no effect of MAT on decomposition of either needle litter type. MAP had a rate-dampening effect on decomposition of Norway spruce litter. There was a rate-stimulating effect of Mn for Norway spruce litter but not for that of Scots pine. In spite of the strong negative effect of AUR and N on decomposition of Scots pine litter there was none at all for that of Norway spruce.Limit values for decomposition were related to the litters’ initial concentrations of N, Mn and AUR and differed between litter types for locally collected, natural litter and for that from experimental litter, the latter having higher N and lower Mn concentrations than the natural litter.We conclude that the two litter types have clear differences as regards rate- regulating factors for decomposition in the late lignin-dominated stage as well as for the stable fraction and suggest two different pathways for their decomposition. This is the first time that different pathways have been suggested for decomposing litter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.