Abstract

Decomposition processes were investigated in the soil of a declining, more eutrophic and a healthy, less eutrophic freshwater reed ( Phragmites australis (Cav.) Trin. ex Steudel) stand in the littoral zone of Rožmberk fishpond, Czech Republic. Soil and pore water were sampled five times from April to October 1998. Chemical properties, CO 2 production in oxic and anoxic conditions, CH 4 production, denitrifying enzyme activity (DEA) and bacterial biomass were measured under laboratory conditions in suspensions prepared from homogenised soil samples. The more eutrophic West stand was more anaerobic than the East stand, with lower redox potential, lower pH and with a higher amount of organic acids, mainly acetic and lactic acid. Mean seasonal concentrations of total nitrogen in pore water, nitrogen of amino acids and proteins, and reducing sugars were all higher in the soil at the more eutrophic stand. Higher nutrient status and more reduced conditions at the more eutrophic stand were accompanied by (i) a limitation of aerobic microbial activities (CO 2 production in oxic conditions: 0.35 versus 0.54 μmol CO 2 cm −3 h −1); lower DEA (4.0 versus 20.2 nmol N 2O cm −3 h −1) and a lower proportion of bacteria that were active in aerobic conditions; (ii) by a prevalence of anaerobic over aerobic microbial processes; (iii) by a higher rate of methanogenesis (15.0 versus 11.5 nmol CH 4 cm −3 h −1) and (iv) by an overall lower rate of microbial processes as compared to less eutrophied stand. The shift from aerobic to anaerobic microbial metabolism, and a coinciding restriction of metabolic activities at the more eutrophic stand are indicative of an elevated oxygen stress in the soil, associated with accumulation of metabolites toxic to both the micro-organisms and the reed. Possible links between eutrophication, decomposition processes in the soil and reed decline are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.