Abstract

Decomposition of leaf litter and its incorporation into the mineral soil are key components of the C cycle in forest soils. In a 13C tracer experiment, we quantified the pathways of C from decomposing leaf litter in calcareous soils of a mixed beech forest in the Swiss Jura. Moreover, we assessed how important the cold season is for the decomposition of freshly fallen leaves. The annual C loss from the litter layer of 69–77% resulted mainly from the C mineralization (29–34% of the initial litter C) and from the transfer of litter material to the deeper mineral soil (>4 cm) by soil fauna (30%). Although only 4–5% of the initial litter C was leached as dissolved organic carbon (DOC), this pathway could be important for the C sequestration in soils in the long term: The DOC leached from the litter layer was mostly retained (95%) in the first 5 cm of the mineral soil by both physico-chemical sorption and biodegradation and, thus, it might have contributed significantly to the litter-derived C recovered in the heavy fraction (>1.6 g cm−3) at 0–4 cm depth (4% of the initial litter C). About 80% of the annual DOC leaching from the litter layer occurred during the cold season (Nov–April) due to an initial DOC flush of water-soluble substances. In contrast, the litter mineralization in winter accounted for only 25% of the annual C losses through CO2 release from the labelled litter. Nevertheless, the highest contributions (45–60%) of litter decay to the heterotrophic soil respiration were observed on warm winter days when the mineral soil was still cold and the labile litter pool only partly mineralized. Our 13C tracing also revealed that: (1) the fresh litter C only marginally primed the mineralization of older SOM (>1 year); and (2) non-litter C, such as throughfall DOC, contributed significantly to the C fluxes from the litter layer since the microbial biomass and the DOC leached from the litter layer contained 20–30% and up to 60% of unlabelled C, respectively. In summary, our study shows that significant amounts of recent leaf litter C (<1 year) are incorporated into mineral soils and that the cold season is clearly less important for the litter turnover than the warm season in this beech forest ecosystem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call