Abstract
Abstract Litter decomposition rates are affected by abiotic and biotic factors such as climate, soil physico-chemical properties, litter chemistry, nitrogen (N) availability, and activities of soil organisms. Elevated N and sulfur (S) deposition originated from oil sands mining and upgrading activities can change soil microbial properties, litter chemistry, and litter decomposition rates in the surrounding forest ecosystems in northern Alberta. We studied (1) the effect of long-term N and S deposition on litter chemistry and soil microbial properties, and (2) the effect of changed litter chemistry and soil microbial properties on litter decomposition (CO2 emission) in a 100-day laboratory incubation experiment using trembling aspen (Populus tremuloides) leaf litter and forest floor collected from a mixedwood boreal forest that has been subject to simulated N and S deposition for 10 years. Litter chemistry (lignin, total carbon (C) and N, and calcium (Ca), aluminum (Al), manganese (Mn), and magnesium (Mg) concentration) and forest floor microbial properties (microbial biomass C and N, and extracellular enzyme activities) were analyzed. Ten years of N and S addition increased N (P
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.