Abstract

AbstractThe M2 internal tide field contains waves of various baroclinic modes and various horizontal propagation directions. This paper presents a technique for decomposing the sea surface height (SSH) field of the multimodal multidirectional internal tide. The technique consists of two steps: first, different baroclinic modes are decomposed by two-dimensional (2D) spatial filtering, utilizing their different horizontal wavelengths; second, multidirectional waves in each mode are decomposed by 2D plane wave analysis. The decomposition technique is demonstrated using the M2 internal tide field simulated by the MITgcm. This paper focuses on a region lying off the U.S. West Coast ranging 20°–50°N, 220°–245°E. The lowest three baroclinic modes are separately resolved from the internal tide field; each mode is further decomposed into five waves of arbitrary propagation directions in the horizontal. The decomposed fields yield unprecedented details on the internal tide’s generation and propagation, which cannot be observed in the harmonically fitted field. The results reveal that the mode-1 M2 internal tide in the study region is dominantly from the Hawaiian Ridge to the west but also generated locally at the Mendocino Ridge and continental slope. The mode-2 and mode-3 M2 internal tides are generated at isolated seamounts, as well as at the Mendocino Ridge and continental slope. The Mendocino Ridge radiates both southbound and northbound M2 internal tides for all three modes. Their propagation distances decrease with increasing mode number: mode-1 waves can travel over 2000 km, while mode-3 waves can only be tracked for 300 km. The decomposition technique may be extended to other tidal constituents and to the global ocean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.