Abstract

We investigate the equation of state of asymmetric nuclear matter and its isospin dependence in various spin-isospin ST channels within the framework of the Brueckner–Hartree–Fock approach extended to include a microscopic three-body force (TBF). It is shown that the potential energy per nucleon in the isospin-singlet T = 0 channel is mainly determined by the contribution from the tensor SD coupled channel. At high densities, the TBF effect on the isospin-triplet T = 1 channel contribution turns out to be much larger than that on the T = 0 channel contribution. At low densities around and below the normal nuclear matter density, the isospin dependence is found to come essentially from the isospin-singlet SD channel and the isospin-triplet T = 1 component is almost independent of isospin asymmetry. As the density increases, the T = 1 channel contribution becomes sensitive to the isospin asymmetry and at high enough densities its isospin dependence may even become more pronounced than that of the T = 0 contribution. The present results may provide some microscopic constraints for improving effective nucleon-nucleon interactions in a nuclear medium and for constructing new functionals of effective nucleon-nucleon interaction based on microscopic many-body theories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.