Abstract

Abstract Point groups consist of rotations, reflections, and roto-reflections and are foundational in crystallography. Symmorphic space groups are those that can be decomposed as a semi-direct product of pure translations and pure point subgroups. In contrast, Bieberbach groups consist of pure translations, screws, and glides. These “torsion-free” space groups are rarely mentioned as being a special class outside of the mathematics literature. Every space group can be thought of as lying along a spectrum with the symmorphic case at one extreme and Bieberbach space groups at the other. The remaining nonsymmorphic space groups lie somewhere in between. Many of these can be decomposed into semi-direct products of Bieberbach subgroups and point transformations. In particular, we show that those 3D Sohncke space groups most populated by macromolecular crystals obey such decompositions. We tabulate these decompositions for those Sohncke groups that admit such decompositions. This has implications to the study of packing arrangements in macromolecular crystals. We also observe that every Sohncke group can be written as a product of Bieberbach and symmorphic subgroups, and this has implications for new nomenclature for space groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call