Abstract
Abstract Using a relation between representation theory of crystallographic space groups and a Dirichlet type of boundary problem for the Laplacian, we derive the solutions for the Dirichlet problem, as well as for a similar Neumann boundary problem, by a complete decomposition of plane waves into irreducible representations of a particular space group. This decomposition corresponds to a basis transformation in L2(Ω) and yields a new set of basis functions adapted to the symmetry of the lattice considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.