Abstract

Decomposition of multivariate time series data into independent source components forms an important part of preprocessing and analysis of time-resolved data in neuroscience. We briefly review the available tools for this purpose, such as Factor Analysis (FA) and Independent Component Analysis (ICA), then we show how linear state space modelling, a methodology from statistical time series analysis, can be employed for the same purpose. State space modelling, a generalization of classical ARMA modelling, is well suited for exploiting the dynamical information encoded in the temporal ordering of time series data, while this information remains inaccessible to FA and most ICA algorithms. As a result, much more detailed decompositions become possible, and both components with sharp power spectrum, such as alpha components, sinusoidal artifacts, or sleep spindles, and with broad power spectrum, such as FMRI scanner artifacts or epileptic spiking components, can be separated, even in the absence of prior information. In addition, three generalizations are discussed, the first relaxing the independence assumption, the second introducing non-stationarity of the covariance of the noise driving the dynamics, and the third allowing for non-Gaussianity of the data through a non-linear observation function. Three application examples are presented, one electrocardigram time series and two electroencephalogram (EEG) time series. The two EEG examples, both from epilepsy patients, demonstrate the separation and removal of various artifacts, including hum noise and FMRI scanner artifacts, and the identification of sleep spindles, epileptic foci, and spiking components. Decompositions obtained by two ICA algorithms are shown for comparison.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.