Abstract

In this paper, we consider the problem of decomposing an integer matrix into a weighted sum of binary matrices that have the strict consecutive ones property. This problem is motivated by an application in cancer radiotherapy planning, namely the sequencing of multileaf collimators to realize a given intensity matrix. In addition, we also mention another application in the design of public transportation. We are interested in two versions of the problem, minimizing the sum of the coefficients in the decomposition (decomposition time) and minimizing the number of matrices used in the decomposition (decomposition cardinality). We present polynomial time algorithms for unconstrained and constrained versions of the decomposition time problem and prove that the (unconstrained) decomposition cardinality problem is strongly NP-hard. For the decomposition cardinality problem, some polynomially solvable special cases are considered and heuristics are proposed for the general case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.