Abstract

Addition of urea-based antifreeze admixtures during cement mixing in construction of buildings has led to increasing indoor air pollution due to continuous transformation and emission of urea to gaseous ammonia in indoor concrete wall. In order to control ammonia pollution from indoor concrete wall, the aqueous dispersion was firstly prepared with nano-scale TiO 2 photocatalysts and dispersing agent, and then mixed with some textile additives to establish a treating bath or coating paste. Cotton woven fabrics were used as the support materials owing to their large surface area and large number of hydrophilic groups on their cellulose molecules and finished using padding and coating methods, respectively. Two TiO 2-loaded fabrics were obtained and characterized by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). Moreover, a specifically designed ammonia photocatalytic system consisting of a small environmental chamber and a reactor was used for assessing the performance of these TiO 2-loaded fabrics as the wall cloth or curtains used in house rooms in the future and some factors affecting ammonia decomposition are discussed. Furthermore, a design equation of surface catalytic kinetics was developed for describing the decomposition of ammonia in air stream. The results indicated that increasing dosage of the TiO 2 aqueous dispersion in treating bath or coating paste improved the ammonia decomposition. And ammonia was effectively removed at low ammonia concentration or gas flow rate. When relative humidity level was 45%, ammonia decomposition was remarkably enhanced. It is the fact that ammonia could be significantly decomposed in the presence of the TiO 2-padded cotton fabric. Whereas, the TiO 2-coated cotton fabric had the reduced photocatalytic decomposition of ammonia and high adsorption to ammonia owing to their acrylic binder layer. Finally, the reaction rate constant k and the adsorption equilibrium constant K values were determined through a curve-fitting method and the TiO 2-padded cotton fabric had the higher k value and lower K value than the TiO 2-coated cotton fabric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call