Abstract

AbstractSatellite observations reveal short pulses in the second time derivative of the geomagnetic field. We seek to interpret these signals using complex empirical orthogonal functions (CEOFs). This methodology decomposes the signal into traveling waves, permitting estimates for the period, angular wave number, and phase velocity. We recover CEOFs from the CHAOS‐6 model, focusing on three geographic regions with strong secular acceleration. Two regions are confined to the equator, while the third is located under Alaska. We find evidence for both eastward and westward traveling waves with periods between 7 and 20 years. There is also evidence for weaker standing waves with complex spatial patterns. Two of the three regions have waves that are compatible with predictions for waves in a stratified fluid. Our results yield estimates for the structure of fluid stratification at the top of the core.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.