Abstract

Decomposition of gas-phase diphenylether (DPE) in the order of several parts per million by volume (ppmv) was studied as a model compound of dioxin using a flow-type electron-beam reactor at an elevated temperature of 473 K. The ground state oxygen (3P) atoms played an important role in the decomposition of DPE resulting in the formation of 1,4-hydroquinone (HQ) as a major ring retaining product. The high yield of hydroquinone indicated that the breakage of ether bond (C–O) is important in the initial step of DPE decomposition. Ring cleavage products were CO and CO2, and NO2 was also produced from background N2–O2. The sum of the yields of HQ, CO2 and CO accounts for over 90% of the removed DPE. Hydroxyl radicals (OH) were less important in the dilute DPE decomposition at a high water content, and were mostly consumed by recombination reactions to form hydrogen peroxide. The smaller the initial DPE concentrations, the higher the decomposition efficiency and the lower the yields of primary products. NO scavenges oxygen atoms and decreases the DPE decomposition, while the addition of n-butane causes positive effect on the decomposition of DPE due to the several secondary radicals (HO2, alkyl and alkoxy radicals) produced during the decomposition of n-butane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call