Abstract
Genome-scale reconstructions are often used for studying relationships between fundamental components of a metabolic system. In this study, we develop a novel computational method for analyzing predicted flux distributions for metabolic reconstructions. Because chemical reactions may have multiple reactants and products, a directed hypergraph where hyperarcs may have multiple tail vertices and head vertices is a more appropriate representation of the metabolic network than a conventional network. We use this view to represent predicted flux distributions by maximum generalized flows on hypergraphs. We then demonstrate that the generalized hyperflow problem may be transformed to an equivalent network flow problem with side constraints. This transformation allows a flux to be decomposed into chains of reactions. Subsequent analysis of these chains helps to characterize active pathways in a flux distribution. Such characterizations facilitate comparisons of flux distributions for different environmental conditions. The proposed method is applied to compare predicted flux distributions for Salmonella typhimurium to study changes in metabolism that cause enhanced virulence during a space flight. The differences between flux distributions corresponding to normal and enhanced virulence states confirm previous observations concerning infection mechanisms and suggest new pathways for exploration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.