Abstract

Abstract For Arctic estuaries that are characterized by landfast sea ice cover during the winter season, processes generating estuarine circulation and residual stratification have not yet been investigated, although some of the largest estuaries in the world belong to this class. Landfast sea ice provides a no-slip surface boundary condition in addition to the bottom boundary, such that frictional effects are expected to be increased. For this study of estuarine circulation and residual stratification under landfast sea ice, first, a simple linear analytical model is used. To include tidally varying scenarios, a water-column model is applied with a second-moment turbulence closure to juxtapose free-surface and ice-covered estuaries. Well-mixed and strongly stratified tidally periodic scenarios are analyzed by means of a decomposition of estuarine circulation into contributions from gravitational circulation, eddy viscosity–shear covariance (ESCO), surface stress, and river runoff. A new method is developed to also decompose tidal residual salinity anomaly profiles. Estuarine circulation intensity and tidally residual potential energy anomaly are studied for a parameter space spanned by the Simpson number and the unsteadiness number. These are the major results of this study that will support future scenario studies in Arctic estuaries under conditions of accelerated warming: (i) residual surface drag under ice opposes estuarine circulation; (ii) residual differential advection under ice destabilizes the near-surface flow; (iii) reversal of ESCO during strong stratification does not occur under landfast sea ice; (iv) tidal pumping (s-ESCO) contributes dominantly to residual stratification also with sea ice cover. Significance Statement Our work gives a first qualitative and quantitative understanding of how landfast sea ice cover on tidal estuaries impacts on the generation of estuarine circulation and residual stratification. Along the Arctic coasts, where some of the world’s largest estuaries are located, these processes play a significant role for the economy and ecology by means of transports of sediments, nutrients and pollutants. Due to Arctic amplification, the conditions for ice-covered estuaries are strongly changing in a way that the ice-covered periods may be shorter in the future. Our results intend to motivate field observations and realistic model studies to allow for better predicting the consequences of these changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call