Abstract

Thomassen formulated the following conjecture: Every 3-connected cubic graph has a red–blue vertex coloring such that the blue subgraph has maximum degree 1 (that is, it consists of a matching and some isolated vertices) and the red subgraph has minimum degree at least 1 and contains no 3-edge path. We prove the conjecture for Generalized Petersen graphs.We indicate that a coloring with the same properties might exist for any subcubic graph. We confirm this statement for all subcubic trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.