Abstract
A discussion is presented of the decomposition of convex polygon-shaped structuring elements into neighborhood subsets. Such decompositions will lead to efficient implementation of corresponding morphological operations on neighborhood-processing-based parallel image computers. It is proved that all convex polygons are decomposable. Efficient decomposition algorithms are developed for different machine structures. An O(1) time algorithm, with respect to the image size, is developed for the four-neighbor-connected mesh machines; a linear time algorithm for determining the optimal decomposition is provided for the machines that can quickly perform 3*3 morphological operations.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.