Abstract

Estimation of Distribution Algorithms (EDAs) have proved themselves as an efficient alternative to Genetic Algorithms when solving nearly decomposable optimization problems. In general, EDAs substitute genetic operators by probabilistic sampling, enabling a better use of the information provided by the population and, consequently, a more efficient search. In this paper the authors exploit EDAs' probabilistic models from a different point-of-view, the authors argue that by looking for substructures in the probabilistic models it is possible to decompose a black-box optimization problem and solve it in a more straightforward way. Relying on the Building-Block hypothesis and the nearly-decomposability concept, their decompositional approach is implemented by a two-step method: 1) the current population is modeled by a Bayesian network, which is further decomposed into substructures (communities) using a version of the Fast Newman Algorithm. 2) Since the identified communities can be seen as sub-problems, they are solved separately and used to compose a solution for the original problem. The experiments showed strengths and limitations for the proposed method, but for some of the tested scenarios the authors’ method outperformed the Bayesian Optimization Algorithm by requiring up to 78% fewer fitness evaluations and being 30 times faster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.