Abstract
The decomposition of benzene and toluene in air streams by UV/TiO2 process was studied in different annular photoreactors under various operating conditions. The shells of reactors used in this research are made of stainless steel, Pyrex glass, or titanium. The TiO2 film was coated to the inner surface of the reactors by either rotating coating or sol-gel techniques. The TiO2 films coated by sol-gel technique were found to be smoother and more uniform than those coated by rotating coating. However, experimental results indicated that the photocatalysis of benzene or toluene in a glass reactor with rotating-coated TiO2 film delivered higher decompositions in air streams than that with sol-gel coated reactors. Benzene and toluene were decomposed more effectively in a coated glass reactor than in a coated stainless steel reactor under the same operating conditions. The presence of water vapor in air-stream plays an important role in the decomposition of benzene and toluene, and a relative humidity of ∼5–6% was found to be adequate. The presence of excessive amounts of humidity retarded the decomposition to certain extents possibly results from the competitive adsorption of water molecules on the active sites of TiO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.