Abstract

An atmospheric pressure AC discharge reactor with nickel (Ni), stainless steel (SS) and copper (Cu) tube electrodes has been systematically studied for ammonia decomposition. Ammonia conversion increased in the following order: Cu<SS<Ni. Conversion induction period was observed for both Ni and SS electrode reactors. The changes of the ammonia conversion, caused by the cover of the external surface of the Ni, SS and Cu electrodes with quartz tubes and the replacement of the Ni electrode and SS electrode by Cu electrode, suggested that the Cu electrode was inert, whereas the Ni and SS electrodes were all active catalysts and the catalytic conversion of ammonia on the catalytic electrodes contributed approximately 50% to the total ammonia decomposed, in which the high-voltage electrodes showed higher activity than the ground electrodes. The combinations of the pre- and post-treatments of the electrodes with the characterizations of the electrodes showed that Fe, Ni and their nitrides were the active phases for the catalytic decomposition of ammonia. Comparatively, the nitrides of Fe and Ni had better catalytic activity. The ammonia conversion induction of the SS and Ni electrode reactors was the in situ nitridation process of the SS and Ni electrodes in nature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.