Abstract
An activated carbon (AC) containing a high concentration (374mgg−1) of Fe was prepared by carbonization of an ion-exchange resin. To examine its chemical reactivity as a catalyst to decompose 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB-153), the decomposition parameters of temperature and time were varied under air or N2. Decomposition at 350°C was achieved within 15min under air and 30min under N2, and the efficiency of PCB-153 decomposition was 99.7% and 98.0%, respectively. An analysis of inorganic chloride ions revealed that PCB-153 was mineralized effectively during the decomposition. The Brunauer–Emmett–Teller (BET) surface area and pore volume of the AC were measured to assess the adsorption capacity before and after the decomposition. The differences between decomposition under air and N2 reflected the differences in the BET surface and pore volume measurements. A decomposition pathway was postulated, and the reactive characteristics of chlorine atoms loaded on the benzene rings followed the order of para>meta>ortho, which agrees with the calculated results from a density functional theory study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.