Abstract
• We propose new models for cutting-stock problem integrated with lot-sizing problem. • We combine column generation method and an adaptive large neighborhood search. • We analyze real-world data instances. We investigate the one-dimensional cutting-stock problem integrated with the lot-sizing problem in the context of paper industries. The production process in paper mill industries consists of producing raw materials characterized by rolls of paper and cutting them into smaller rolls according to customer requirements. Typically, both problems are dealt with in sequence, but if the decisions concerning the cutting patterns and the production of rolls are made together, it can result in better resource management. We investigate Dantzig–Wolfe decompositions and develop column generation techniques to obtain upper and lower bounds for the integrated problem. First, we analyze the classical column generation method for the cutting-stock problem embedded in the integrated problem. Second, we propose the machine decomposition that is compared with the classical period decomposition for the lot-sizing problem. The machine decomposition model and the period decomposition model provide the same lower bound, which is recognized as being better than the linear relaxation of the classical lot-sizing model. To obtain feasible solutions, a rounding heuristic is applied after the column generation method. In addition, we propose a method that combines an adaptive large neighborhood search and column generation method, which is performed on the machine decomposition model. We carried out computational experiments on instances from the literature and on instances adapted from real-world data. The rounding heuristic applied to the first column generation method and the adaptive large neighborhood search combined with the column generation method are efficient and competitive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.