Abstract

It is well-known that a Riemann surface can be decomposed into the so-called pairs-of-pants. Each pair-of-pants is diffeomorphic to a Riemann sphere minus 3 points. We show that a smooth complex projective hypersurface of arbitrary dimension admits a similar decomposition. The n-dimensional pair-of-pants is diffeomorphic to CP n minus n+2 hyperplanes. Alternatively, these decompositions can be treated as certain fibrations on the hypersurfaces. We show that there exists a singular fibration on the hypersurface with an n-dimensional polyhedral complex as its base and a real n-torus as its fiber. The base accommodates the geometric genus of a hypersurface V. Its homotopy type is a wedge of h n, o ( V) spheres S n .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.