Abstract

Let alpha(1), ... , alpha(m) be linear functions on C-n and X = C-n V(alpha), where alpha = Pi(m)(i=1) alpha(i) and V(alpha) = {p is an element of C-n : alpha(p) = 0}. The coordinate ring O-X = C[x](alpha) of X is a holonomic A(n)-module, where A(n) is the n-th Weyl algebra, and since holonomic A(n)-modules have finite length, O-X has finite length. We consider a twisted variant of this A(n)-module which is also holonomic. Define M-alpha(beta) to be the free rank 1 C[x](alpha)-module on the generator alpha(beta) (thought of as a multivalued function), where alpha(beta) = alpha(beta 1)(1) ... alpha(beta m)(m) and the multi-index beta = (beta(1), ... , beta(m)) is an element of C-m. It is straightforward to describe the decomposition factors of M-alpha(beta), when the linear functions alpha(1), ... , alpha(m) define a normal crossing hyperplane configuration, and we use this to give a sufficient criterion on beta for the irreducibility of M-alpha(beta), in terms of numerical data for a resolution of the singularities of V(alpha).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call