Abstract

The decomposition characteristic of austenite retained in a GCr15 bearing steel modified by the addition of 1.3wt.% silicon during tempering was investigated by microstructural observation, X-ray determination, and dilatometric experiment. The addition of 1.3wt.% silicon in the modified GCr15 bearing steel significantly increases the amount of remaining austenite. After tempering at 300°C for 96h, 18vol.% of austenite with 1.6wt.% carbon remained. Austenite decomposition during the tempering is a bainitic transformation, and occurs via the displacive mechanism, following by carbon partitioning into the remaining austenite. The bainite transformation becomes slower as the carbon enrichment in austenite improves. In contrast, carbide precipitation accelerates the bainite transformation kinetics. However, the carbon enrichment in austenite associated with carbon partitioning and the precipitation of carbides are competitive processes, with their relative rates depending on temperature. Consequently, the improvement in the thermal stability of austenite is ascribed to the combined effects of the partitioning of carbon into austenite and the suppression of carbide precipitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.