Abstract
Algorithmic paradigms such as divide-and-conquer (D&C) are proposed to guide developers in designing efficient algorithms, but it can still be difficult to apply algorithmic paradigms to practical tasks. To ease the usage of paradigms, many research efforts have been devoted to the automatic application of algorithmic paradigms. However, most existing approaches to this problem rely on syntax-based program transformations and thus put significant restrictions on the original program. In this article, we study the automatic application of D&C and several similar paradigms, denoted as D&C-like algorithmic paradigms, and aim to remove the restrictions from syntax-based transformations. To achieve this goal, we propose an efficient synthesizer, named AutoLifter , which does not depend on syntax-based transformations. Specifically, the main challenge of applying algorithmic paradigms is from the large scale of the synthesized programs, and AutoLifter addresses this challenge by applying two novel decomposition methods that do not depend on the syntax of the input program, component elimination and variable elimination , to soundly divide the whole problem into simpler subtasks, each synthesizing a sub-program of the final program and being tractable with existing synthesizers. We evaluate AutoLifter on 96 programming tasks related to six different algorithmic paradigms. AutoLifter solves 82/96 tasks with an average time cost of 20.17 s, significantly outperforming existing approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Programming Languages and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.