Abstract

Effective electrification of automotive vehicles requires designing the powertrain's configuration along with sizing its components for a particular vehicle type. Employing planetary gear (PG) systems in hybrid electric vehicle (HEV) powertrain architectures allows various architecture alternatives to be explored, including single-mode architectures that are based on a fixed configuration and multimode architectures that allow switching power flow configuration during vehicle operation. Previous studies have addressed the configuration and sizing problems separately. However, the two problems are coupled and must be optimized together to achieve system optimality. An all-in-one (AIO) system solution approach to the combined problem is not viable due to the high complexity of the resulting optimization problem. This paper presents a partitioning and coordination strategy based on analytical target cascading (ATC) for simultaneous design of powertrain configuration and sizing for given vehicle applications. The capability of the proposed design framework is demonstrated by designing powertrains with one and two PGs for a midsize passenger vehicle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.