Abstract

In recent year, the Many-objective Optimization Problems (MaOPs) have become an increasingly hot research area in evolutionary computation. However, it is still a difficult problem to achieve a good balance between convergence and diversity on solving various kinds of MaOPs. To alleviate this issue mentioned above, a Decomposition and dominance relation based many-objective Evolutionary Algorithm(DdrEA) is proposed in this paper. Firstly, the population is decomposed into numbers of sub-populations by using a set of uniform weight vectors, in which they are optimized in a cooperative manner. Then, the fitness value of solution in each sub-population is calculated by angle dominance relation and angle. Finally, elite selection strategy is performed according to its corresponding fitness value. That is, in each subspace, the solution with the smallest fitness value is selected as the elite solution to enter the next generation. Comparing with several high-dimensional and multi-objective evolutionary algorithms (NSGA-II/AD, RVEA, MOMBI-II), the experimental results show that the performance of the proposed algorithm DdrEA is better than that of the comparison algorithm, and the convergence and diversity of the population can be effectively balanced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call