Abstract

Cities play a major role in decoupling economic growth from carbon emission for their significant role in climate change mitigation from national level. This paper selects Beijing (economic center and leader of emission reduction in China) as a case to examine the decoupling process during the period 2000–2015 through a sectoral decomposition analysis. This paper proposes the decoupling of carbon emission from economic growth or sectoral output by defining the Tapio decoupling elasticity, and combined the decoupling elasticity with decomposition technique such as Logarithmic Mean Divisia Index approach. The results indicate that agriculture and industrial sectors presented strong decoupling state, and weak decoupling is detected in construction and other industrial sectors. Meanwhile, transport sector is in expansive negative decoupling while trade industry shows expansive coupling during the study period. Per-capita gross domestic product, industrial structure, and energy intensity are the most significant effects influencing the decoupling process. Agriculture and industry are conducive to decoupling of carbon emissions from economic output, while transport and trade are detrimental to the realization of strong decoupling target between 2000 and 2015. However, construction and other industrial sectors exerted relatively little minor impact on the whole decoupling process. Improving and promoting energy-saving technologies in transport sector and trade sector should be the key strategy adjustments for Beijing to reduce carbon emissions in the future. The study aims to provide effective policy adjustments for policy makers to accelerate the decoupling process in Beijing, which, furthermore, can lay a theoretical foundation for other cities to develop carbon emission mitigation polices more efficiently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call