Abstract

The excessive growth of carbon emissions (CO2E) from industrial energy use not only exacerbates global warming and severely curbs the sustainable development of the economy and society. As a high energy-consuming sector second only to the fossil energy division, the power and heavy division, China's chemical industry should have received more attention for its CO2E. However, there are limited literatures on energy CO2E in China's chemical sector at present. Based on this fact, this current paper uses the energy utilization approach, the input–output analysis approach, and the extended structural decomposition method to evaluate the energy-related CO2E of China's chemical sector from 2007 to 2017. (1) China's chemical sector energy-related CO2E showed a trend of first growth and then a slow decline, demonstrating that the rapid growth of China's chemical sector energy-related CO2E has been effectively controlled; However, it should be noted that the chemical industry is still dominated by high-CO2E energy-related CO2E at the current stage. (2) Input structure and energy intensity effects have a reduced influence on the growth of energy-related CO2E in China's chemical sector. This is due to upgrading energy use technology and optimizing the generalized technology progress rate in the chemical sector. (3) Energy structure and final demand effects have encouraged the growth of the chemical sector's energy-related CO2E. It shows that the industrial system's demand for chemical products is constantly expanding, and the chemical products still have the characteristics of high carbonization. Also, the chemical sector's supply-side energy utilization structure has not been significantly enhanced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call