Abstract
Decomposition rates of peat and cellulose, and oxygen consumption rates were studied in three minerotrophic peat mires in Sasakami, central Japan. These mires had differences in topography, pedology and hydrology. Two dominant vegetation types in each mire, a Sphagnum palustre–S. cuspidatum community and a Rhynchospora fauriei community, were selected as the decomposition study sites. The objective of this study was to examine how the environmental and vegetational differences in mires correlate with the activity of decomposition. Decomposition rates of peat and the rates of cellulolysis were studied in the field for 6 months. Oxygen consumption rates were measured in the field using a closed chamber equipped with an oxygen electrode. In situ peat decomposition rates showed significant differences among the three mires, whereas in situ cellulolysis rates showed significant differences between communities. Peat mass loss rates positively correlated with the nitrogen and carbon concentration of the peat. Cellulolysis rates positively correlated with the range of water table fluctuation. Oxygen consumption rates showed significant negative correlation with the averaged and minimum water table depth, and positive correlation with the range of water table fluctuation. There was a significant positive correlation between cellulolysis rates and oxygen consumption rates. These are useful parameters for evaluating how the decomposition activity in soil depends on the vegetation types and water conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.