Abstract
We obtain a decomposition result for the steady state queue length distribution in egalitarian processor-sharing (PS) models. In particular, for multi-class egalitarian PS queues, we show that the marginal queue length distribution for each class equals the queue length distribution of an equivalent single class PS model with a random number of permanent customers. Similarly, the mean sojourn time (conditioned on the initial service requirement) for each class can be obtained by conditioning on the number of permanent customers. The decomposition result implies linear relations between the marginal queue length probabilities, which also hold for other PS models such as the egalitarian PS models with state-dependent system capacity that only depends on the total number of customers in the system. Based on the exact decomposition result for egalitarian PS queues, we propose a similar decomposition for discriminatory processor-sharing (DPS) models, and numerically show that the approximation is accurate for moderate differences in service weights.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.