Abstract

Let $S=\{K_{1,3},K_3,P_4\}$ be the set of connected graphs of size 3. We study the problem of partitioning the edge set of a graph $G$ into graphs taken from any non-empty $S'\subseteq S$. The problem is known to be NP-complete for any possible choice of $S'$ in general graphs. In this paper, we assume that the input graph is cubic, and study the computational complexity of the problem of partitioning its edge set for any choice of $S'$. We identify all polynomial and NP-complete problems in that setting, and give graph-theoretic characterisations of $S'$-decomposable cubic graphs in some cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.