Abstract

We show that under the proper forcing axiom the class of all Aronszajn lines behave like [Formula: see text]-scattered orders under the embeddability relation. In particular, we are able to show that the class of better-quasi-order labeled fragmented Aronszajn lines is itself a better-quasi-order. Moreover, we show that every better-quasi-order labeled Aronszajn line can be expressed as a finite sum of labeled types which are algebraically indecomposable. By encoding lines with finite labeled trees, we are also able to deduce a decomposition result, that for every Aronszajn line [Formula: see text] there is an integer [Formula: see text] such that for any finite coloring of [Formula: see text] there is subset [Formula: see text] of [Formula: see text] isomorphic to [Formula: see text] which uses no more than [Formula: see text] colors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.