Abstract

Fuzzy mathematical morphology is an extension of binary morphology to gray-scale morphology, using techniques from fuzzy set theory. In this paper, we will study the decomposition and construction of fuzzy morphological operations based on /spl alpha/-cuts. First, we will investigate the relationship between /spl alpha/-cuts of the fuzzy morphological operations and the corresponding binary operations. Next, we will review several ways to obtain fuzzy morphological operations starting from binary operations and /spl alpha/-cuts. The investigation is carried out in both the continuous and the discrete case. It is interesting to observe that several properties that do not hold in the continuous case do hold in the discrete case. This is quite important since in practice we only work with discrete objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.