Abstract

Along with higher and higher integration of intellectual properties (IPs) on a single chip, traditional bus-based system-on-chips (SoC) meets several design difficulties (such as low scalability, high power consumption, packet latency and clock tree problem). As a promising solution, network-on-chips (NoC) has been proposed and widely studied. In this work, a novel algorithm for NoC topology synthesis, which is decomposing and cluster refinement (DCR) algorithm, has been proposed to minimize the total power consumption of application-specific NoC. This algorithm is composed of two stages: decomposing with cluster generation, and cluster refinement. For partitioning and cluster generation, an initial low-power solution for NoC topology is generated. For cluster refinement, the clustering is optimized by performing floorplan to further reduce power consumption. Meanwhile, a good tradeoff between power consumption and CPU time can be achieved. Experimental results show that the proposed method outperforms the existing work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.