Abstract

Semidefinite programs (SDPs) are important computational tools in controls, optimization, and operations research. Standard interior-point methods scale poorly for solving large-scale SDPs. With certain compromise of solution quality, one method for scalability is to use the notion of structured subsets (e.g. diagonally-dominant (DD) and scaled-diagonally dominant (SDD) matrices), to derive inner/outer approximations for SDPs. For sparse SDPs, chordal decomposition techniques have been widely used to derive equivalent SDP reformations with smaller PSD constraints. In this paper, we investigate a notion of decomposed structured subsets by combining chordal decomposition with DD/SDD approximations. This notion takes advantage of any underlying sparsity via chordal decomposition, while embracing the scalability of DD/SDD approximations. We discuss the applications of decomposed structured subsets to semidefinite optimization. Basis pursuit for refining DD/SDD approximations are also incorporated into the decomposed structured subset framework, and numerical performance is improved as compared to standard DD/SDD approximations. These results are demonstrated on H∞ norm estimation problems for networked systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.