Abstract

The aim of this paper is to introduce new statistical criteria for estimation, suitable for inference in models with common continuous support. This proposal is in the direct line of a renewed interest for divergence based inference tools imbedding the most classical ones, such as maximum likelihood, Chi-square or Kullback–Leibler. General pseudodistances with decomposable structure are considered, they allowing defining minimum pseudodistance estimators, without using nonparametric density estimators. A special class of pseudodistances indexed by α>0, leading for α↓0 to the Kullback–Leibler divergence, is presented in detail. Corresponding estimation criteria are developed and asymptotic properties are studied. The estimation method is then extended to regression models. Finally, some examples based on Monte Carlo simulations are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.