Abstract
Geometric conditions are known under which a closed face of a compact convex set is a peak set with respect to the space of continuous affine (real-valued) functions. The purpose of this note is to give an application of this “abstract-geometric” set-up to the problem of finding peak sets (or points) in a compact Hausdorff space with respect to a closed subspace of continuous complex-valued functions. In this fashion we obtain the strong hull criteria of Curtis and Figá-Talamanca and in particular the Bishop peak point theorem for function algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.