Abstract
Highly efficient washing and extraction of microbeads to decomplex analytes ranging from small peptides to large viruses was realised in a microscaled continuous flow format. The bead washing principle reported herein is based on acoustophoresis, i.e. the primary acoustic radiation force in an ultrasonic standing wave and laminar flow properties are utilised to translate bioanalytes trapped on functionalised microbeads from one carrier fluid to another. The carry-over of non-specific material ranges from 1 to 50 ppm relative to input levels depending on application, making acoustophoresis suitable for extraction of rare species from complex environments. Selective extraction of a phosphopeptide relative to its unphosphorylated counterpart is demonstrated using metal oxide affinity capture (MOAC) beads and MALDI-TOF MS readout. Acoustophoresis of microbeads activated with specific binders could be used to capture phage viral particles. The efficiency of the acoustophoretic washing principle was demonstrated by an unspecific phage cross contamination level of only 10(-6) of that in the input bead/phage mixture. The continuous flow format makes acoustophoretic washing flexible regarding sample volume and also allows for easy integration into a sequence of particle handling and analytical unit operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.