Abstract

Following the conventional physicochemical treatment of electroless nickel (Ni) plating wastewater (ENPW) in electroplating wastewater treatment plants, highly stable and recalcitrant coordination complexes of Ni (CCN) still remain. This results in various technical problems, leading to the treatment difficulty, poor wastewater biochemistry, and failure to meet effluent standards. Therefore, an efficient decomplexation system involving heterogeneous catalytic ozonation assisted with heavy metal chelation (O3/SAO3II-MDCR) was proposed in this study for the advanced treatment of CCN. The catalyst SAO3II was characterized by various methods, which revealed the mechanism of catalytic ozonation. Hydroxyl radicals (OH) and other reactive oxygen species (ROS) groups were detected, proving that catalytic ozonation was a complicated reaction process and also a foundation process of the entire system. These ROS are vital for decomplexation via heterogeneous catalytic ozonation of the system. During the catalytic decomplexation process via ozonation, CCN first underwent gradual decomposition from a highly stable macromolecular state to a volatile micromolecular state (or even completely mineralized state). Then Ni was chelated to form an insoluble and stable chelate via competitive coordination. The optimum conditions for the O3/SAO3II-MDCR system were determined by single factor static experiments. After treatment with the O3/SAO3II-MDCR system, the effluent concentration of total Ni was found to be <0.1 mg L−1, exhibiting a removal rate of up to 95.6% and achieving effective removal of total Ni from ENPW and stably meeting the discharge standard. O3/SAO3II-MDCR system can easily and hopefully be extended to practical engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.