Abstract

Heavy metal contamination from electroplating wastewater is a serious risk to terrestrial life and public health. The complexed metal cannot be effectively removed by traditional precipitation without decomplexing. In this work, four ozone-based advanced oxidation processes, O3, O3/H2O2, O3/UV and O3/H2O2/UV to decomplex electroplating wastewater were investigated and their performance compared. Ethylenediaminetetraacetic acid (EDTA) and citric acid are the most common components of electroplating wastewater. They were used as representatives to study the decomplexation and mineralization of complexes in the ozone-based advanced oxidation processes. Among all, the highest degradation and mineralization efficiency of EDTA occurred in O3/UV and was 65% and 53% in 60 min, respectively. For citric acid, the highest degradation (77%) and mineralization (56%) efficiency was observed in the O3/H2O2/UV process. This indicates that selection of the advanced oxidation process is determined by the target contaminant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.