Abstract

Forty-two white-rot fungi in submerged cultures were tested to determine their dye decolorization capacity and the optimal conditions for the decolorization process. Trametes pubescens Cui 7571 was found to be the most effective strain in terms of decolorization performance on the azo dye Congo Red, and it exhibited excellent reusability as well as persistence in sequential decolorization experiments. Optimization of the decoloration process was also conducted to evaluate the effects of a number of chemical compounds, metal salts, inducers, and mediators on the dye decolorization rate. On the seventh day, a highest dye removal of 98.83 % was observed with addition of copper at 2.5 mmol L−1, Tween 80 at 1.0 % (v/v), and ferulic acid at 0.50 μmol L−1, respectively. The adsorption of mycelia to dyes was not a significant contributor to dye removal, and decolorization by the functional fungus T. pubescens depended on biodegradation by enzymes, as evidenced by the results of the moist heat sterilization treatment (121°C for 20 min), induction of extracellular enzymes, and scanning electron microscopy. Four dye degradation metabolites, i.e., naphthalene amine, biphenyl amine, biphenyl ,and naphthalene diazonium, were identified by Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. The phytotoxicity tests indicated that degraded metabolites had almost a negligible effect on the plant seeds as compared to that of dye, which is indicative of the less toxic nature of the metabolites. Our results suggest that white-rot fungus T. pubescens could be developed into a novel azo dye bioremediation strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.