Abstract

Cassava rhizomes are left in fields after harvesting. This agricultural waste is rich in lignocellulosic material which is a substrate for white rot fungi. Disposal of synthetic dyes poses a problem to the environment and it needs to be addressed. The ability of Lentinus polychrous Lév., a white rot fungus, grown on the cassava rhizome chips, to decolorise three kinds of synthetic dye was studied. The effects of the initial moisture content of cassava rhizome used for fungal cultivation, the temperature during the decolorisation, and the pH of synthetic dye solution on the extent of decolorisation were investigated. The decolorisations of Reactive blue 49, Navy blue and Acid blue 62 were affected by the initial moisture content of cassava rhizome. The highest extents of decolorisation of these dyestuffs were observed when the fungus was cultivated at 70% initial moisture content. Temperatures of 30, 37 and 45oC did not alter the extent of decolorisation of the dyestuffs. The most extensive decolorisations of Reactive blue 49 and Acid blue 62 (anthraquinone dyes) were at pH 3.0 while that of Navy blue (azo dye) was at pH 7.0. Adsorption was the main mechanism of decolorisation of Navy blue. However, both enzymic degradation and adsorption were involved in the decolorisations of Reactive blue 49 and Acid blue 62.

Highlights

  • MATERIAL AND METHODSCassava is a plant with large tuberous roots and it is a major source of dietary carbohydrate in tropical and subtropical regions

  • The effects on decolorisation of the initial moisture content of cassava rhizome used for fungal cultivation

  • The results of figures 1A-D show clearly that the two dyestuffs which were decolorised mainly by enzymic degredation were decolorised more extensively when the moisture content of the cassava rhizomes used for fungal cultivation was increased

Read more

Summary

Introduction

MATERIAL AND METHODSCassava is a plant with large tuberous roots and it is a major source of dietary carbohydrate in tropical and subtropical regions. The ability of Lentinus polychrous Lév., a white rot fungus, grown on the cassava rhizome chips, to decolorise three kinds of synthetic dye was studied. The effects of the initial moisture content of cassava rhizome used for fungal cultivation, the temperature during the decolorisation, and the pH of synthetic dye solution on the extent of decolorisation were investigated.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.