Abstract

BackgroundLong-term use of indwelling urethral catheters is associated with high risk of urinary tract infection (UTI) and blockage, which may in turn cause significant morbidity and reduce the life of the catheter. A 0.02% polyhexanide irrigation solution has been developed for routine mechanical rinsing together with bacterial decolonization of suprapubic and indwelling urethral catheters.MethodsUsing a practice-like in vitro assay and standard silicon catheters, artificially contaminated with clinically relevant bacteria, experiments were carried out to evaluate the bacterial decolonization potential of polyhexanide vs. 1) no intervention (standard approach) and 2) irrigation with a saline (NaCl 0.9%) solution. Swabbing and irrigation was used to extract the bacteria.ResultsIrrigation with polyhexanide reduced the microbial population vs. the control catheters by a factor of 1.64 log10 (swab extraction) and by a factor of 2.56 log10 (membrane filtration). The difference in mean microbial counts between the two groups (0.90) was statistically significant in favor of polyhexanide when the liquid extraction method was used (p = 0.034). The difference between the two groups using the swab extraction method did not reach statistical significance.ConclusionsThe saline and polyhexanide solutions are able to reduce bacterial load of catheters, which shows a combined mechanical and antimicrobial effect. Further research is required to evaluate the long-term tolerability and efficacy of polyhexanide in clinical practice.

Highlights

  • Long-term use of indwelling urethral catheters is associated with high risk of urinary tract infection (UTI) and blockage, which may in turn cause significant morbidity and reduce the life of the catheter

  • In the suspension test assay according to EN 13727 the polyhexanide solution was shown to have bactericidal activity in vitro against Staphylococcus aureus, Enterococcus hirae, Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis and Klebsiella pneumonia under clean conditions (Table 1)

  • The catheters irrigated with the polyhexanide solution had a mean microbial population of 1.47 log10 when measured using the swab extraction method and 1.01 log10 (0.30– 1.60 log10) when the membrane filtration method was used

Read more

Summary

Introduction

Long-term use of indwelling urethral catheters is associated with high risk of urinary tract infection (UTI) and blockage, which may in turn cause significant morbidity and reduce the life of the catheter. The long-term use of indwelling urethral and suprapubic catheters to manage intractable urinary incontinence and retention is commonplace in both hospital and especially community healthcare settings [1,2,3,4,5,6,7,8,9]. Long-term catheterization can lead to significant patient morbidity and mortality caused by associated complications [10]. The most common complications that occur are urinary tract infection (UTI) and catheter blockage, which can affect up to 70% of catheterized patients [9,10,11].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.