Abstract

Using Pekar variational method, Eigen energies of the ground and first excited states of the polaron in triangular bound and Coulomb potential quantum dot are derived in view of investigating the density of probability, the decoherence time and the Shannon entropy. Numerical analysis show that the decoherence time is decreasing function of polaron radius and the strength of the Coulombic impurity and the increase function of dispersion coefficient. These results suggest that the decrease of polaron radius and Coulombic impurity lead to the increase of coherence time. Also the entropy shows the oscillatory periodic evolution as function of the time due to the triangular form of the confinement. It’s also seen that entropy is periodic for the lower value of Coulomb impurity parameter and for the higher value of the polaronic radius.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.