Abstract

Markovian regime decoherence effects in quantum computers are studied in terms of the fidelity for the situation where the number of qubits N becomes large. A general expression giving the decoherence time scale in terms of Markovian relaxation elements and expectation values of products of system fluctuation operators is obtained, which could also be applied to study decoherence in other macroscopic systems such as Bose condensates and superconductors. A standard circuit model quantum computer involving three-state lambda system ionic qubits is considered, with qubits localized around well-separated positions via trapping potentials. The centre of mass vibrations of the qubits act as a reservoir. Coherent one and two qubit gating processes are controlled by time-dependent localized classical electromagnetic fields that address specific qubits, the two qubit gating processes being facilitated by a cavity mode ancilla, which permits state interchange between qubits. With a suitable choice of parameters, it is found that the decoherence time can be made essentially independent of N.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.